Quantum simulation has revolutionized the way scientists study complex systems across various fields, including finance, cybersecurity, pharmaceuticals, AI, and machine learning. One of the key areas where quantum simulation has made significant progress is in molecular spectroscopy, particularly in understanding molecular properties through the exploration of vibronic spectra. Molecular vibronic spectra have long been a
Science
Superconductors have fascinated researchers for over a century, with their ability to carry electricity without any energy loss. The potential applications of superconductors span across various industries, from electronics to transportation. However, the limiting factor has been the need for extremely low temperatures for superconductivity to occur. Recent research has shed light on the possibility
In the realm of physics, the concept of a two-dimensional flatland challenges our traditional understanding of the universe. Researchers, such as Georgia State University Professor of Physics Ramesh G. Mani and recent Ph.D. graduate U. Kushan Wijewardena, have delved into this fascinating world to uncover the mysteries hidden within. Their recent publication in Communications Physics
Recent advancements in microscopy technology have led to the development of a new two-photon fluorescence microscope that has the potential to revolutionize the study of neural activity at cellular resolution. This innovative approach, characterized by high-speed imaging capabilities and reduced harm to brain tissue, offers researchers a clearer view of how neurons communicate in real-time.
When adding or removing neutrons from an atomic nucleus, the size of the nucleus changes. This alteration in size leads to tiny energy level changes in the atom’s electrons, known as isotope shifts. Scientists can harness precision measurements of these energy shifts to determine the radius of the nucleus of an isotope. In a recent
NASA’s Cold Atom Lab has achieved a groundbreaking milestone in the field of quantum science by utilizing ultra-cold atoms to detect subtle vibrations of the International Space Station (ISS). This innovative approach marks a significant advancement in the application of quantum technology in space, providing a new perspective on how we can study the fundamental
Light technology plays a pivotal role in various innovative applications, but transmitting light through challenging environments has always been a daunting task. The distortion and disruption of light fields in complex and fluctuating media pose significant hurdles in achieving clear and reliable results. Researchers at Soochow University have recently made a groundbreaking discovery that could
Since the advent of the laser in the 1960s, laser spectroscopy has revolutionized the study of atoms and molecules, providing insights into their intricate structures and dynamic behaviors. With advancements in laser technology, the capabilities of laser spectroscopy have been significantly enhanced, leading to breakthrough discoveries in various fields of science. One of the main
Quantum computers are on the verge of revolutionizing information processing, with the potential to outperform conventional computers in various applications such as machine learning and optimization. However, the deployment of quantum computers on a large scale is hindered by their sensitivity to noise, which leads to errors in computations. One of the techniques developed to
Chemistry has always been a field that relies heavily on precise analysis and prediction. Over the years, chemists have used various methods to determine the structure of small molecules, with one common technique being the use of x-ray crystallography. However, this process has its limitations, especially when it comes to predicting the phase of x-rays