Science

When dealing with systems that involve many interacting particles, the complexity and chaos that can arise may seem overwhelming. However, is it possible to simplify the description of these systems using simple theories? This question was investigated by a research team led by Professor Monika Aidelsburger and Professor Immanuel Bloch from the LMU Faculty of
0 Comments
Quantum error correction has been a hot topic in the field of quantum computing for several decades. Recently, Hayato Goto from the RIKEN Center for Quantum Computing in Japan proposed a new approach to quantum error correction using what he refers to as “many-hypercube codes.” This innovation has the potential to revolutionize fault-tolerant quantum computing
0 Comments
The recent research conducted by a team of scientists from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland explores the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. Their findings, published in Science Advances, shed light on the antiferromagnetic coupling of
0 Comments
The recent study conducted by researchers at the University of Bonn sheds light on the impressive capability of light particles to merge into a “super photon” under specific conditions. This phenomenon, known as Bose-Einstein condensate, has been manipulated by the researchers using tiny nano molds to create a simple lattice structure with important implications for
0 Comments
Researchers at the National University of Singapore (NUS) have made significant progress in simulating higher-order topological (HOT) lattices using digital quantum computers. These complex lattice structures have the potential to enhance our understanding of advanced quantum materials and their robust quantum states, which are increasingly important in various technological applications. The study of topological states
0 Comments
In a groundbreaking discovery, a collaborative research team has identified the world’s first multiple Majorana zero modes (MZMs) within a single vortex of the superconducting topological crystalline insulator SnTe. Led by Prof. Junwei Liu from the Hong Kong University of Science and Technology (HKUST), along with Prof Jinfeng Jia and Prof Yaoyi Li from Shanghai
0 Comments
Equation of state measurements in extreme pressure environments have always been a challenge for scientists in the field of condensed-matter sciences. A recent paper published in the Journal of Applied Physics by an international team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory, and Deutsches Elektronen-Synchrotron introduces a new sample configuration that
0 Comments
Topological materials are a unique class of materials that possess extraordinary properties due to the intricate nature of their wavefunction, which governs the behavior of electrons within them. These materials exhibit knots and twists in their wavefunctions, leading to fascinating physical phenomena. When a topological material interfaces with its surrounding space, the wavefunction must unwind,
0 Comments