Science

In the realm of physics, the concept of a two-dimensional flatland challenges our traditional understanding of the universe. Researchers, such as Georgia State University Professor of Physics Ramesh G. Mani and recent Ph.D. graduate U. Kushan Wijewardena, have delved into this fascinating world to uncover the mysteries hidden within. Their recent publication in Communications Physics
0 Comments
Recent advancements in microscopy technology have led to the development of a new two-photon fluorescence microscope that has the potential to revolutionize the study of neural activity at cellular resolution. This innovative approach, characterized by high-speed imaging capabilities and reduced harm to brain tissue, offers researchers a clearer view of how neurons communicate in real-time.
0 Comments
Light technology plays a pivotal role in various innovative applications, but transmitting light through challenging environments has always been a daunting task. The distortion and disruption of light fields in complex and fluctuating media pose significant hurdles in achieving clear and reliable results. Researchers at Soochow University have recently made a groundbreaking discovery that could
0 Comments
Since the advent of the laser in the 1960s, laser spectroscopy has revolutionized the study of atoms and molecules, providing insights into their intricate structures and dynamic behaviors. With advancements in laser technology, the capabilities of laser spectroscopy have been significantly enhanced, leading to breakthrough discoveries in various fields of science. One of the main
0 Comments
Quantum computers are on the verge of revolutionizing information processing, with the potential to outperform conventional computers in various applications such as machine learning and optimization. However, the deployment of quantum computers on a large scale is hindered by their sensitivity to noise, which leads to errors in computations. One of the techniques developed to
0 Comments
Quantum sensing technology has taken a groundbreaking step forward with the development of a new 2D quantum sensing chip using hexagonal boron nitride (hBN) by researchers at TMOS, the ARC Center of Excellence for Transformative Meta-Optical Systems, and RMIT University. This innovative sensor has the ability to detect temperature anomalies and magnetic fields in any
0 Comments
In the world of solar cells and light-emitting diodes (LEDs), the battle against exciton-exciton annihilation is intense. This phenomenon, which leads to the loss of energy and decreased efficiency in these systems, is a major challenge that researchers are working to overcome. Controlling this annihilation process is crucial for improving the performance of optoelectronic devices.
0 Comments